Like other electric and hybrid-electric vehicles, BEVs minimize wasted energy by turning the car off when stopped (“idle-off”) and by charging the battery when braking (“regenerative braking”). Electric motors are also inherently more energy-efficient than gasoline or diesel engines.
Battery electric cars have the added benefit of home recharging. A 240-volt outlet, similar to those used for clothes dryers, can charge a vehicle overnight. Fully-charged, most battery electric cars have a driving range of between 70 to 100 miles, well within the day-to-day range requirements of most Americans, though some BEVs can go up to 265 miles on a single charge. An increasing number of public and workplace charging stations provide added charging capacity.
More subjectively, many drivers appreciate the driving experience provided by all-electric cars. Electric motors generate near-instant torque, or turning-force, while the torque of internal combustion engines increases in tandem with the engine’s revolutions (RPM). This means that BEVs have extremely fast acceleration and a “light” or “zippy” feel compared to conventional cars and trucks.
Battery electric cars have the added benefit of home recharging. A 240-volt outlet, similar to those used for clothes dryers, can charge a vehicle overnight. Fully-charged, most battery electric cars have a driving range of between 70 to 100 miles, well within the day-to-day range requirements of most Americans, though some BEVs can go up to 265 miles on a single charge. An increasing number of public and workplace charging stations provide added charging capacity.
More subjectively, many drivers appreciate the driving experience provided by all-electric cars. Electric motors generate near-instant torque, or turning-force, while the torque of internal combustion engines increases in tandem with the engine’s revolutions (RPM). This means that BEVs have extremely fast acceleration and a “light” or “zippy” feel compared to conventional cars and trucks.
Comments
Post a Comment